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The Potts Model Built on Sand
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We consider the q=4 Potts model on the square lattice with an additional non-
local interaction. That interaction arises from the choice of the reference mea-
sure taken to be the uniform measure on the recurrent configurations for the
abelian sandpile model. In that reference measure some correlation functions
have a power-law decay. We investigate the low-temperature phase diagram and
we prove the existence of a single stable phase with exponential decay of corre-
lations. For all boundary conditions the density of 4 in the infinite volume limit
goes to one as the temperature tends to zero.
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1. INTRODUCTION

Over the last 15 years the concept of self-organized criticality has become
very popular in science. While controversy remains in how new or origi-
nal the idea is, certainly a whole literature has been inspired by the con-
cept and a multitude of models and phenomena have been investigated in
that light. It is indeed remarkable to observe such a universality in power-
law response behavior for a wide variety of phenomena and over many
different scales. One of the main models or even paradigms where self-
organized criticality has been studied is the abelian sandpile model intro-
duced in ref. 1. The model is attractive not only because it is simple to
define and to simulate but also because it has an interesting mathematical
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structure. The sandpile model gives rise to an elegant algebraic formalism
and some aspects of the stationary measure are exactly solvable, see ref. 2.
We will remind the reader of the sandpile model in Section 2.2.

One of the important questions is to understand the robustness of the
phenomenon of self-organized criticality. Specifically, what remains of the
criticality when adding an interaction to the sandpile model. Obviously,
there are trivial ways to destroy the critical behavior. For example, in two
dimensions, we could add a sufficiently large chemical potential to sta-
bilize the 3-phase or the 4-phase. Here we choose to add an interaction
that is symmetric with respect to the possible heights. Another input could
certainly be that in close to physical realizations of the sandpile model,
the grains at neighboring sites could stick together, preferring neighboring
heights at the same level. The simplest realization is then the Potts inter-
action. The first question is: what phase will survive for positive or even
sufficiently low temperatures. The present paper gives an answer: the max-
imal height wins (4’s dominate over 3’s in two dimensions). At the same
time, we prove exponential decay of the correlations in the corresponding
low temperature phase.

From a different angle, our model adds a rather unusual a priori or
reference measure to the standard Potts model. The reference measure,
being concentrated on the stationary measure of the sandpile model, has
nonlocal features and introduces constraints. We are not aware of previ-
ous studies of Gibbs measures in such an environment and indeed many
of the first results (such as existence of thermodynamic limit) and of the
standard techniques (such as the usual cluster expansion) break down or
have no immediate answer when a priori measure possesses such nonlocal
constraints. In the paper we observe that the method of random cluster
representation can be stretched to include the study of our Potts model
built on sand. We use it to show the stability of the maximal phase. To
prove the domination of that maximal phase over the others we use some
extended contour ensemble method. It can be seen as an extension of the
Dinaburg-Sinai techniques of ref. 3.

Open questions remain. The domination results are here restricted to
low temperature. Most interesting is the question whether there would be
a cross-over from exponential to power-law like behavior of correlations at
some finite temperature or whether the self-organized criticality disappears
at arbitrarily high temperatures.

We start in the next section with the details of our model. The results
are collected in Section 3. Section 4 proves the stability of the maximal
phase and the last section contains the cluster expansion formalism that
proves the instability of the other phases.
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2. MODEL

We define the model on the two-dimensional lattice Z2. Lattice sites
are denoted by x, y, z and we write x ∼ y if x and y are nearest neigh-
bors. For a subset V ⊂Z2 we denote by ∂V the exterior boundary of V ,
i.e., the set of those y ∈Z2 \ V such that there exists a nearest neighbor
of y in V , V =V ∪ ∂V , and the set ∂(Z2 \V ) is called the inner bound-
ary of V . The square [−n,n]2 ∩Z2 is denoted by Vn. The configuration
space is Ω={1,2,3,4}Z2

. Elements of Ω are written as η, ξ . For a config-
uration η, η(x)∈ {1,2,3,4} is interpreted as the “number of sand grains”
at x. For n∈N, Ωn={1,2,3,4}Vn denotes the set of finite volume height
configurations. Below we introduce measures µaβ,n on Ωn that correspond
to the finite volume Potts model at inverse temperature β with bound-
ary condition a ∈ {1,2,3,4}, restricted to a special set of “recurrent con-
figurations” defined from the abelian sandpile model (cf. Section 2.2). Our
main result is that for β large, µ4

β,n forms the single stable phase of that
model.

2.1. Potts Model

The Potts Hamiltonian with fixed boundary condition a ∈ {1,2,3,4}
on the volume Vn is

Hn(η|a)=
∑

x∼y∈Vn
I [η(x) �=η(y)].

That is a finite sum over nearest-neighbor pairs of sites of which at least
one belongs to Vn and where it is understood that we substitute η(z)= a
whenever z /∈Vn.

The Hamiltonians Hn(η|a) give rise to the finite volume Gibbs mea-
sures on Ωn

νaβ,n(η)=
1
Zaβ,n

exp[−βHn(η|a)],

where β > 0 is the inverse temperature and where the normalizing factor
Zaβ,n is the partition function. It is well-known that there exists a critical
inverse temperature βc ∈ (0,+∞) such that for β <βc the Potts model has
a unique infinite volume Gibbs measure (as n↑+∞), i.e., the weak limits
of νaβ,n for different a coincide, while for β >βc, these weak limits are all
different and define four mutually singular ergodic Gibbs measures νaβ on
Ω, called the pure phases, see for example ref. 4.
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2.2. Sandpile Model

The abelian sandpile model in volume Vn is a Markov chain on Ωn.
We briefly introduce that Markov chain, more details can be found in the
original paper(1,2,5). The Markov chain starting from η0∈Ωn is defined as
follows. Suppose that ηt−1 is the configuration at time t−1�0. Pick ran-
domly a site in Vn, say x ∈ Vn, and add one grain at x to ηt−1. In case
ηt−1(x)�3, the new configuration is simply

ηt (y)=ηt−1(y)+ δx,y

with δx,y the Kronecker delta. In case ηt−1(x)= 4, by adding one grain
at x the number of grains at x becomes equal to 5. That site will now
topple, i.e., 4 grains are removed from x and one grain is given to each
neighbor of x in Vn. At the boundary, grains are lost when the site top-
ples. It is now possible that the number of grains at one or more neigh-
bors of x exceeds 4 and we have to repeat the toppling operation on all
of these, and so on. It turns out that no matter in what order we perform
these toppling operations, at the end of the avalanche a unique configura-
tion ηt ∈Ωn appears. In that way, a discrete time Markov chain on Ωn is
defined where the only randomness is in the independently repeated uni-
form choice of the site where a grain is added.

Analysis of that Markov chain shows that it has a unique class Rn of
recurrent configurations and the stationary measure λn is uniform on that
class

λn(η)= 1
|Rn|I [η∈Rn],

see ref. 2.
Whether a particular configuration η ∈ Ωn belongs to Rn can be

decided from the output of the so-called burning algorithm(2). The burn-
ing algorithm has as an input the configuration η and its output is a set
A⊂ Vn. It runs as follows: start from A0 = Vn and remove (“burn”) all
those vertices x ∈A0 (and edges containing x) which satisfy η(x)>nA0(x)

where nV (x) denotes the number of neighbors of x in V . This gives A1;
now proceed in the same way with A1, etc. until no further vertices can
be removed. The output A of the algorithm is the set of remaining verti-
ces. Recurrence is then characterized by “burnability”, i.e., η ∈Rn if and
only if A=∅, i.e., all vertices can be burned.

The stationary measure λn is thus the uniform probability measure
on all burnable configurations in Vn. The cardinality |RV | (= the number
of recurrent configurations in V ) equals the determinant of the discrete
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Laplacian on V with open boundary conditions see ref.2. E.g., if V is a
square containing N sites, then |RV |
 (3.21)N .

For a proof of these facts, see e.g., refs. 2,5–7. Remark that for all
finite V ⊂Z2, the constant configurations η≡ 4 and η≡ 3 are in RV , but
η≡ 2 and η≡ 1 are not recurrent except for some very special choices of
V . One easily concludes that the condition that η∈Rn is a nonlocal con-
straint.

The following proposition is an immediate consequence of the burn-
ing algorithm.

Proposition 2.1. If η∈Rn and ξ � η (pointwise), then ξ ∈Rn.

In some aspects the abelian sandpile measure λn, n→∞, behaves
as a model of statistical mechanics at the critical point, a phenomenon
which is sometimes referred to as “self-organized criticality” because there
is no explicit tuning of parameters. In the physics literature various critical
exponents related to the avalanche behavior are introduced for that model.
One signature of “critical behavior” is the presence of power law decay of
correlations for the height 1 two-point function, as proven by Majumdar
and Dhar in ref. 8.

Proposition 2.2. There exist constants c,C >0 such that

c|x|−4 � |λn(η(0)=η(x)=1)−λn(η(0)=1)λn(η(x)=1)|�C |x|−4

for all x �=0 and n large enough.

On the other hand, a contour of 4’s completely decouples the inside
and the outside, as we now show. A subset V ⊂Z2 is called simply con-
nected if the corresponding V̂ ⊂R

2 obtained by “filling the squares” of V
is simply connected.

Proposition 2.3. For W ⊂Vn denote by 4W the event that η(x)= 4
on W . For any simply connected subset V ⊂Z2 with V ⊂Vn

λn(ηV ηVn\V |4∂V )=λn(ηV |4∂V )λn(ηVn\V |4∂V ). (2.1)

Proof. Denote by Rext
Vn\V the set of configurations which are burnable

in Vn \V and such that the extension ηVn\V 4V is burnable in Vn. By the
burning algorithm, ηV 4∂V ηVn\V ∈RVn if and only if ηV ∈RV and ηVn\V ∈
Rext
Vn\V . Therefore
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λn(ηV ηVn\V |4∂V ) =
I [ηV ∈RV , ηVn\V ∈Rext

Vn\V ]

|Rext
Vn\V ||RV |

, (2.2)

λn(ηV |4∂V ) = I [ηV ∈RV ]
|RV | , (2.3)

λn(ηVn\V |4∂V ) =
I [ηVn\V ∈Rext

Vn\V ]|RV |
|Rext

Vn\V ||RV |
, (2.4)

which gives the result.

2.3. Sandpile Model with Potts Interaction

Define the probability measures µaβ,n on Ωn as

µaβ,n(η)=
exp(−βHn(η|a))I [η∈Rn]

	aβ,n
,

where the normalizing constant 	aβ,n is

	aβ,n≡
∑
η∈Rn

exp(−βHn(η|a)).

Similarly, we define the partition function 	aβ,V in an arbitrary finite vol-
ume V . This partition function will also be abbreviated as 	a,V . µaβ,n is of
course just the original Potts measure conditioned on being recurrent:

µaβ,n(η)=νaβ,n(η|Rn).

Obviously, at infinite temperature, β=0, we recover the stationary measure
λn of the sandpile model. The constraint η ∈Rn can be viewed as intro-
ducing an extra nonlocal interaction (implicitly given by the burning algo-
rithm) but it also breaks the Potts-symmetry: approximately for n↑+∞,
λn(η(0)=4)=0.4, λn(η(0)=3)=0.3, λn(η(0)=2)=0.2, λn(η(0)=1)=0.1 as
computed by Priezzhev.(9)

3. RESULTS

With boundary condition a= 4, at low temperature, the typical con-
figurations of the Potts model on sand look like an ocean of 4’s with expo-
nentially rare burnable islands.
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Theorem 3.1. For any ε >0 there exists β0∈ (0,∞) such that for all
β >β0 and all n∈N

µ4
β,n(η(0)=4)>1− ε. (3.1)

Moreover there exists c>0 such that for β>β0 and n big enough we have
the bound

|µ4
β,n(η(x)η(0))−µ4

β,n(η(x))µ
4
β,n(η(0))|� e−c|x| (3.2)

exponentially small in the distance |x| from the origin.

Equation (3.2) must be contrasted with the situation for β=0 where there
are long range correlations, (see Proposition 2.2).

Besides “all 4”, the “all 3” is the only other groundstate. But that one
is unstable.

Theorem 3.2. For every α > 0 there exists β(α) ∈ (0,∞) and c =
c(α,β)>0 such that for all β >β(α)

µ3
β,n(|{x ∈Vn : η(x)=3}|>α|Vn|)� e−c|Vn| (3.3)

for large n.

Section 4 gives the proof of Theorem 3.1 and introduces a random
cluster representation of the Potts model on sand. Section 5 is devoted to
the proof of Theorem 3.2. It will be seen that, as an extension of Theo-
rem 3.2, for no matter what boundary conditions, the density of 4 tends
to one with β ↑+∞.

4. RANDOM CLUSTER REPRESENTATION

The volume Vn = Vn ∪ ∂Vn can be considered as a finite graph with
the sites x ∈ Vn ∪ ∂Vn as vertices and with edge set Bn =B consisting of
the nearest neighbor bonds x∼y where at least one neighbor is in Vn. We
define the sand-Potts random cluster measure ϕap,n=ϕap on this graph with
parameter p ∈ [0,1] as the probability measure on {0,1}B which to each
σ ∈{0,1}B assigns probability

ϕap(σ )=
1
Na
p

[∏
e∈B

pσ(e)(1−p)1−σ(e)
] ∑
η∈Rn

I, [η is constant on clusters of σ.]

(4.1)



186 Dinaburg et al.

By cluster we mean a (nearest-neighbor) connected component of sites
(including isolated sites) as obtained from the bond configuration σ .
Bonds for which σ(e)= 1, σ(e)= 0 are called open, respectively, closed.
In this definition, we assume that the boundary sites are all connected
(wired). All sites that are connected to the boundary are in the same clus-
ter. The restriction that η is constant on clusters also implies that η is con-
stant equal to a on the cluster of the boundary. Remember however that
η≡2 and η≡1 are not in Rn.

4.1. Stochastic Domination

Lemma 4.1. Let a= 3 or a= 4. For every edge e= 〈xy〉 in B and
every σB\e ∈{0,1}B\{e},

ϕap(σ (e)=1|σB\e)=p (4.2)

if x and y are connected via open edges in σB\e. If, on the other hand, x
and y are not connected via open edges in σB\e, then we still have

p�ϕap(σ (e)=1|σB\e) (4.3)

and for a=4,

ϕ4
p(σ (e)=1|σB\e)� p

7−6p
. (4.4)

Proof. Let σ ∈{0,1}B . We write

∑
η∈Rn

I [η is constant on clusters]=k(n, a;σ) (4.5)

for the number of recurrent configurations that are constant on the σ -
clusters and fixed equal to a for each site that is σ -connected to ∂Vn.
It equals |Rn| when all edges in σ are closed. Obviously, k(n, a;σ)� |Rn|
and k(n, a;σ) is decreasing in σ and is increasing in a. For a = 3 or 4,
k(n, a;σ)�1. Continuing with either a=3 or a=4, we have

ϕap(1eσB\e)
ϕap(0eσB\e)

= p k(n, a;1eσB\e)
(1−p) k(n, a,0eσB\e) , (4.6)
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and hence

ϕap(σ (e)=1|σB\e)= 1

1+ ϕap(0eσB\e)
ϕap(1eσB\e)

= p

p+ (1−p)k(n,a;0eσB\e)
k(n,a;1eσB\e)

. (4.7)

Abbreviate σ 0,e=0eσB\e and σ 1,e=1eσB\e; they are both equal to σB\e off
e and σ 0,e(e)=0 and σ 1,e(e)=1.

To prove the first statement (4.2): suppose x, y are connected via open
edges in σB\e, then every configuration η ∈ Rn compatible with σ has
η(x)= η(y), and hence k(n, a;σ) does not depend on σ(e) in that case.
However, if x and y are not connected via open edges in σB\e, then we
must investigate the effect of merging two clusters. By making e open,
we connect two clusters and we must estimate the new number of recur-
rent configurations that are constant on clusters in terms of the old. Since
always

k(n, a;σ 0,e)� k(n, a;σ 1,e), (4.8)

we obtain (4.3) from (4.7). For the last statement (4.4), we combine Prop-
osition 2.1 with (4.7). Suppose that η∈Rn and is constant on clusters C1
and C2 taking there the values a1 and a2, respectively. The new configura-
tion ξ defined as

ξ(x)=η(x), x /∈C1∪C2, ξ(x)=max{a1, a2}, x ∈C1∪C2

is still recurrent and is constant on C1 ∪C2. Moreover, if say C1 is the
boundary cluster, then necessarily a1 = 4 and hence also max{a1, a2} =
4 remains compatible with the boundary. (This does not work with the
boundary condition a= 3.) Simple counting shows that the map η→ ξ is
at most seven to one, or

k(n,4;σ 0,e)�7k(n,4, σ 1,e), (4.9)

combination of (4.9) and (4.7) gives (4.4).

Let ψq be the Bernoulli product measure on {0,1}B with density q=
ψq(σe=1).

Proposition 4.2. The random cluster measure ϕ4
p stochastically dom-

inates ψq with q=p/(7−6p), i.e., ϕ4
p(σ (e)=1, e∈E)�ψq(σ(e)=1, e∈E)
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for all edge sets E. For a = 3,4, ϕap is stochastically dominated by ψp.
Finally, ϕap always stochastically dominates ϕa

p′ for 0�p′�p�1.

Proof. The first and second statement follows directly from Lemma
4.1, see e.g., Theorem 4.8 in ref. 4. The last statement follows from (4.7)
and (4.8).

4.2. Coupling

The previous construction and arguments are analogous to and
inspired by the Fortuin–Kasteleyn representation of the standard Potts
model. To recover the q-state Potts model, one should simply replace Rn

in (4.5) with Ωn. Our next step, making a coupling between the η− and
the σ−field, is the analogue of the Swendsen–Wang–Edwards–Sokal cou-
pling.(10,11) For a general reference, see ref. 4.

We make a coupling P
a
p,n=P

a
p between the Potts model on sand and

the sand-Potts random cluster measure. Let P
a
p be the probability mea-

sure on Ωn×{0,1}B constructed as follows. Assign first to each site in Vn
a sandvalue according to the probability measure λn and each site at the
boundary ∂Vn gets the value a. Independently, let each edge in B take the
value 0 or 1 with probabilities 1− p and p, respectively. Secondly, con-
dition on the event that no two neighboring sites (including sites at the
boundary) with different heights have an open edge connecting them. In
a formula,

P
a
p(η, σ )=

1
Ma
p

I [η∈Rn]
∏

e=〈xy〉∈B

[
pσ(e)(1−p)1−σ(e) I [(ηx −ηy)σ (e)=0]

]
,

where in the last indicator function it is understood that η(z)= a for z∈
∂Vn.

Proposition 4.3. Suppose β =− ln(1− p). Then, µaβ,n is the mar-
ginal of P

a
p projected on Ωn and ϕap is the marginal of P

a
p projected on

{0,1}B .

Proof. The proof is by direct computation. For example, if we sum
over the σ we have

∑
σ

∏
e∈B

[
pσ(e)(1−p)1−σ(e) I [(η(x)−η(y))σ (e)=0]

]= (1−p)I [η(x)�=η(y)]

which determines 1−p= exp[−β].
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4.3. Proof of Theorem 3.1: Stability of the 4-Phase

We apply Proposition 4.3

µ4
β,n (η(0)=4)

� P
4
p (η(0)=4| 0 is in the cluster of the boundary)

× ϕ4
p (0 is in the cluster of the boundary)

= ϕ4
p (0 is in the cluster of the boundary), (4.10)

and now Proposition 4.2 to conclude that

µ4
β,n(η(0)=4)�ψp/(7−6p) [0 is connected to the boundary]

which goes to one, uniformly in n as β =− ln(1−p) goes to +∞. That
shows (3.1). For the exponential decay of correlations, (3.2), observe that
by the very same argument as above one shows that for large β, in µ4

β,n

there is percolation of 4’s uniformly in n. For each n the µ4
β,n—proba-

bility that there is a nearest-neighbor path of 4’s connecting the origin
with the boundary ∂Vn is not smaller than the percolation probability in
the Bernoulli bond process with occupation probability (1−exp[−β])/(1+
6 exp[−β]). Moreover, we can always consider a rectangle parallel to Vn
between the origin and site x with one side proportional to |x| and the
other side equal to n. Again by the same domination argument, the µ4

β,n—
probability that in that rectangle, there is percolation of 4’s from one side
of Vn to the opposite side is not smaller than 1− exp[−c|x|] with c↑+∞
as β ↑+∞, uniformly in n. Therefore, denoting that event by “crossing”,
we have that

|µ4
β,n(η(x)η(0))−µ4

β,n(η(x)η(0)|crossing)|� exp[−c|x|].

That can be combined with Proposition 2.3; if the origin and the site x
are separated by a path of 4’s, then they are independent

µ4
β,n(η(x)η(0)|crossing)=µ4

β,n(η(x)|crossing)µ4
β,n(η(0)|crossing).

For each of the two factors we can use the previous argument to conclude
the proof.
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5. INSTABILITY OF THE 3-PHASE

In this section we prove Theorem 3.2.
The main idea is to consider the restricted ensemble defined below

(following ideas from ref. 3). Let V be a finite (large) volume and η∈ΩV
a configuration in the volume V . Define the contours of η as connected
components of edges separating the different values of η in neighboring
sites (we now consider these sites as centers of unit squares and the edges
are the sides of these squares). We suppose that the configuration η∈RV

is burnable. The set of configurations that have contours with lengths not
exceeding 12 not touching ∂V is denoted by R12

V . That set of configura-
tions defines a restricted ensemble. It is easy to see that we have the fol-
lowing alternative: either the configuration η is a sea of 4 with islands
made from contours with length �12, or it is a sea of 3 with such islands

R12
V =R12

V,4∪R12
V,3. (5.1)

Notice that a sea of 2 or 1 is not possible by burnability.
In Appendix A we list all subconfigurations of energy �12 in the sea

of 4. The most important observations can be summarized as follows:

Lemma 5.1. Islands with energy �11 in the sea of 3 are in one-
to-one correspondence with islands with the same energy of 4. The cor-
respondence is given by substitution 3←→4.

Lemma 5.2. The same correspondence can be applied to all islands
with energy =12, with two exceptions

1 1
1

and
2 2
2
2 2

.

The correspondence gives all islands in the sea of 3 with energy 12.

Proof. This follows from the fact that

1 4 1
1

and
2 2
2 4
2 2

are burnable but

1 3 1
1

and
2 2
2 3
2 2

are not burnable.
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5.1. Free Energy Estimates

Define 	(12)
4,V and 	

(12)
3,V to be the partition functions of the ensembles

R12
4,V , respectively, R12

3,V .

Lemma 5.3. There exists β0 such that for any β >β0 there exists a
constant c>0 such that for any sufficiently large volume V

log	(12)
4,V − log	(12)

3,V � c|V |e−12β. (5.2)

Proof. Define the extended ensemble R12,ext
V,3 , consisting of all config-

urations of disjoint burnable islands with energy �12 in the sea of 3 in
volume V . Evidently

R12
V,3⊂R12,ext

V,3 ,

and the inclusion is strict because e.g.

2 3 3 2
2 3 3 2

is a subconfiguration allowed in the ensemble R12,ext
V,3 but not in the

ensemble R12
V,3. Indeed, it is not burnable but the island

2
2

is burnable.

If we analogously define R12,ext
V,4 , then in fact R12,ext

V,4 =R12
V,4 because a

configuration of (disjoint) islands in a sea of 4 is burnable if and only if
all the individual islands are burnable in the sea of 4, see Proposition 2.3.

Therefore

	
(12,ext)
3,V �	(12)

3,V ,

and we can obtain Lemma 5.3 from the following.

Proposition 5.4.

log	(12)
4,V − log	(12,ext)

3,V � c|V |e−12β. (5.3)

The proof is an application of the usual polymer expansion (see refs.
12 and 13) because islands in the sea of 4 do not interact (again from



192 Dinaburg et al.

Proposition 2.3). Comparing the expansions of log	(12)
4,V and log	(12,ext)

3,V
term by term, and using Lemmas 5.1 and 5.2, we obtain a difference in
the terms of order e−12β and no difference in previous terms. In the same
way it is easy to prove a weaker inequality valid for all finite V ⊂Zd .

Proposition 5.5. For β > β0 there exist c > 0, f ∈R such that for
any finite V ⊂Zd :

log	(12)
4,V − log	(12)

3,V � log	(12)
4,V − log	(12,ext)

3,V

� c|V |e−12β −f |∂V |. (5.4)

5.2. Proof of Theorem 3.2

Again, the connected components of the set of lattice edges separat-
ing different values of neighboring spins are called contours. Each con-
tour γ will be associated with values of spins on all squares touching γ .
Consider the set �={γ1, . . . , γn} of all those contours of a given config-
uration η ∈RV,3 which have energy (length) exceeding 12, |γi |> 12. We
call � the polycontour of η. The polycontour separates the volume V into
a finite number of connected domains V1, . . . , Vm. To each domain Vi is
associated the value of the spin κi , induced by contours γj neighboring
this domain (so κi = κ if the spins in the inner boundary of Vi are equal
to κ). If �=∅ then there is the domain V , to which is associated κ = 3.
Denote the band consisting of squares touching � by [�]. From burnabil-
ity it follows that all domains Vi for which κi = 1,2 are contained in [�].
We denote by V (3) the union of those Vi for which κi=3, and by V (4) the
union of those Vi for which κi=4. Now ζ , the number of 3’s in V , equals

ζ = ζ (3)+ ζ (4),

where ζ (3), respectively, ζ (4) denotes the number of 3’s in V (3), respectively,
V (4). Therefore

Prob[ζ �α|V |]�Prob
[
ζ (3)� α

2
|V |

]
+Prob

[
ζ (4)� α

2
|V |

]
.

We will separately estimate the two terms in the right-hand side. The last
one is the easiest. By definition of V (4), all spin values equal to 3 in
V (4) are contained in the islands listed above. Each island contains �8
squares and has an energy �4. So the energy per square is �1/2. If
ζ (4)� |V |α/2, then the energy of the configuration is �α|V |/4. Note that
	3,V �1 because the configuration ≡3 has zero energy. So the probability
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of the configuration η is less than or equal exp(−βα|V |/4). As the total
number of configurations does not exceed 4|V |,

µ3
β,V

(
ζ (4)� α

2
|V |

)
�4|V | exp

(
−β α

4
|V |

)
, (5.5)

which, when αβ >4 log 4, tends to zero as |V |→∞.
The rest of the proof is an estimate of µ3

β,V (ζ
(3)�α|V |/2).

Note that ζ (3)� |V (3)|, and hence

µ3
V,β(ζ

(3)� α

2
|V |)�µ3

V,β(|V (3)|�
α

2
|V |)= Zα

	3,V
, (5.6)

where Zα is the partition function of those configurations η∈RV,3 for
which |V (3)|�α/2|V |.

It is easy to see that

Zα �
∑
�

e−β|�|	(12)
3,V (3)

	
(12)
4,V (4)

, (5.7)

where the sum runs over those polycontours �, for which |V (3)|�α/2, |V |
(�=∅, for which V (3)=V is included).

Let us now estimate 	3,V . Consider only those configurations η ∈
RV,3 which also belong to R12

V ′,4, where V ′ is V without squares touching
∂V . Then we have

	3,V � e−3β|∂V |	(12)
4,V ′ . (5.8)

From the cluster expansion (or by direct counting),

	
(12)
4,V ′ � e−h|∂V |	(12)

4,V (5.9)

for some constant h>0. Therefore,

	3,V � e−d|∂V |	(12)
4,V (5.10)

for some constant d (depending on β). So we obtain

Zα

	3,V
� ed|∂V |

∑
� e−β|�|	(12)

3,V (3)
	
(12)
4,V (4)

	
(12)
4,V

, (5.11)
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where the sum over � is as in (5.7). On the right-hand side use that for
every ξ1 ∈R12

V (3),4
and for every ξ2 ∈R12

V (4),4
, there exists a ζ ∈R12

V,4 that

coincides with ξ1 on V (3) and with ξ2 on V (4). Hence,

	
(12)
4,V �	(12)

4,V (3)
	
(12)
4,V (4)

(5.12)

and thus

Zα

	3,V
� ed|∂V |

∑
�

e−β|�|
	
(12)
3,V (3)

	
(12)
4,V (3)

. (5.13)

Now use the inequality (5.4) in order to obtain the following estimate

(4.6) � (4.13) � ed|∂V |
∑
�

e−β|�|ef |∂V
(3)|e−c|V

(3)|e−12β
. (5.14)

But evidently |∂V (3)|� |∂V |+ |�|, and V (3)�α|V |/2, so we have the esti-
mate

e(d+f )|∂V |e−
1
2αc|V |e−12β ∑

�

e−β
′|�|, (5.15)

where β ′ =β−f . To estimate the last sum is standard combinatorics:

∑
�

e−β
′|�|�

∏
x∈X


1+

∑
γ�x,|γ |>12

e−β
′|γ |


 , (5.16)

where X is the set of all vertices—ends of edges inside V , |X|� |V |. A
classical Peierls’ estimate gives

∑
γ�x,|γ |>12

e−β
′|γ |�H ′e−13β ′ �He−13β (5.17)

for some constants H =H ′ exp[13f ]. Since

1+He−13β � eHe−13β
,

we obtain the estimate

(4.6) � e(d+f )|∂V |e−
1
2αc|V |e−12β

eH |V |e
−13β

. (5.18)
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If β > log[2H/αc], this product tends to zero as |V |→∞, |∂V |/|V |→ 0.
That together with (4.5) concludes the proof.

Remark 5.6. To prove that the density of 1’s or 2’s goes to zero is
even easier: Let N be the number of 1’s and 2’s in V , N =N(3,4)+N [Γ ]

where N(3,4) is the number of 1’s and 2’s in V (3) ∪ V (4) and N [Γ ] is the
number of 1’s and 2’s in [Γ ]. Observe that N [Γ ] �2|Γ |, and the 1’s and
2’s in V (3) ∪V (4) are contained in islands. For the islands, the energy per
square is �1/2. The energy of a configuration is equal to |Γ | plus the
energy of the islands. Hence, if N �α|V |, then that energy is not less than
α|V |/2. We can then do as in (4.5) to prove that

µ3
β,V (N �α|V |)→0 as |V |→+∞

whenever αβ >2 log 4.
The same proof as above remains valid for the ensemble RV,4. In

fact, it is valid modulo straightforward modifications, for general bound-
ary conditions as well. The proof for the ensemble with general boundary
conditions ξ only needs small modifications concerning the islands touch-
ing the boundary.

APPENDIX A: ISLANDS IN THE SEA OF 4

Here we give all subconfigurations of energy �12 in the sea of 4. Of
course, these islands have to be burnable. In the figure, empty cells are part
of the sea.

(1) Energy=4:

1 , 2 , 3

(2) Energy=6:

2 2 , 3 3 and rotations and reflections

(this remark will be omitted from here on)

(3) Energy=7

1 2 , 1 3 , 2 3

(4) Energy=8

a
b

, where a, b=1,2,3.
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2 2 2 , 3 3 3 ,
2 2

2
,

3 3
3

,
3 3
3 3

(5) Energy=9

a b b ,
a b

b
where a=1,2,3, b=2,3, a �=b.

(6) Energy=10

a b c ,
a b

c
where a �=b, b �= c; a, b, c=1,2,3

and if a= c=1 then b=3.

a a
b

, where a=2,3, b=1,2,3.

a a
a
a

,
a

a a
a

, a a a a ,
a
a a

a
,

where a=2,3.

2 2
3 2

,
3 3
2 3

,
3 3
1 3

,
3 3

3 3 3
,

3 3 3
3 3 3

.

(7) Energy=11

a b
c

, where a, b, c=1,2,3, a �=b.

b b
a c

, where b=2,3, a, c=1,2,3, a �=b, a �= c, b �= c.

a a a
b

,
a a a

b

a a
a
b

,
a a b

a

a a
a b

, a a a b where a=2,3, b=1,2,3,

b �=a.

3 3
3 3 a

, where a=1,2.
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(8) Energy=12

a
b

c
,

a c
b

, where a, b, c=1,2,3.

a b
c a

where a, b, c=1,2,3, a �=b, a �= c, if a=1 then b= c=3,

if a=2, then b=3 or c=3.

c a a b ,
c a a

b
,

c a a
b

,
c a

a b
,

c a b
a

where a=2,3,

b, c=1,2,3, a �=b, a �= c; if a=2, then b=3 or c=3.

3 3
3 3

a
for a=1,2,3.

a a b c ,
a a b

c
,

a a
b c

,
a a

b
c

where a, b, c=1,2,3, a �=1, a �=b, b �= c.
b

a a
a

,
a a

a
b

,
a a

a
b

where a=2,3 and

b=1,2,3.

a a
a

a a
, a a a a a ,

a a a
a
a

,

a a
a
a
a

,
a a
a

a a
,

a a
a a

a
,

a a a
a
a

,
a

a a a
a

,
a
a a

a a
where a=2,3.
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3 3
3 3 3

3
,

3 3
3 3 3 3

,
3 3 3
3 3 3 3

,

3 3 3 3
3 3 3 3

,
3 3
3 3 3

3
,

3 3
3 3 3
3

3 3
3 3 3

3 3
,

3 3
3 3 3
3 3 3

3 3 3
3 3 3
3 3 3

,
3 3 3
3 3
3
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